
Page 1

Integral Test and P-Series

Consider the improper integral results:

( (
" "

∞ ∞

#

" "

B B
.B .B    compared with     

What does this imply about:

                � �
8œ" 8œ"

∞ ∞
" "
8 8#



Page 2

Integral Test:  If  is positive, continuous, and decreasing 1 and0 aB  

a  a positive integer , then  and  either8 8
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both converge or both diverge.

Proof:

   
Area of inscribed rectangles:   Area of circumscribed rectangles
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Examples:
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Theorem:  For any positive integer , the series 5 + œ +  +  Þ Þ Þ�
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diverge.  That is - the first  terms do not affect the convergence/divergence5
of an infinite series.
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Theorem on Convergence/Divergence of the -series:
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diverges if .  Therefore by the Integral Test the theorem is proven.: Ÿ "

Note: i.e. the -series when  is called the Harmonic Series.�
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Note:  Even though we know whether or not a -series converges, we do not:
know what it converges to!
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10  Þ Alternate proof of divergence of Harmonic Series.
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11  Þ How many terms of the harmonic series are needed to obtain a sum
greater than ?#!

12  Þ How many terms of the harmonic series are needed to obtain a sum
greater than ?"!!

13  Þ How many terms of the harmonic series are needed to obtain a sum
greater than ?"''!



Page 11

Miscellaneous Results:
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Although the Integral Test can be used to determine whether or not an infinite
series converges or diverges it does not indicate what a convergent series
converges to. 

We will now investigate a method in which we can find an approximation to the
sum of a convergent infinite series if the series satisfies the hypotheses of the
Integral Test.

Definition:  The remainder of a series is denoted by  and is represented byVR

the sum of all of the terms  minus the sum of the first  terms . i.e.W R WR

V œ W � W ÞR R

Consider a positive, continuous, decreasing function such as the one shown in
the accompanying graph.
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14  Þ Approximate the sum of the series using the first  terms and�
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15  Þ Determine the number of terms to include in the sum in order to find the

sum of so that the truncation error .� � �
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