Integral Test and P-Series

Consider the improper integral results:

 $\int_1^\infty \frac{1}{x} dx$

compared with

$$\int_1^\infty \frac{1}{x^2} \, dx$$

What does this imply about:

Integral Test: If f is positive, continuous, and decreasing $\forall x \ge 1$ and $a_n = f(n)$ (n a positive integer), then $\sum_{n=1}^{\infty} a_n$ and $\int_1^{\infty} f(x) dx$ either both converge or both diverge.

Proof:

Let
$$S_n = f(1) + f(2) + ... + f(n)$$
, then

$$\sum_{i=2}^n f(i) =$$
 and $\sum_{i=1}^{n-1} f(i) =$

The exact area $\int_1^n f(x) dx$ is between the inscribed and circumscribes area, so

Proof: Assume $\int_1^\infty f(x) dx$ converges, then for $n \ge 1$

Proof: Assume $\int_1^\infty f(x) dx$ diverges, then

Examples: **1.** $\sum_{n=1}^{\infty} ne^{-n}$

Note:
$$\lim_{x \to \infty} \frac{1}{x(\ln x)^3} =$$

Note: $\lim_{x \to \infty} \ln x =$

$$4. \qquad \sum_{n=1}^{\infty} \frac{\ln n}{n}$$

Theorem: For any positive integer k, the series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$

and the series $\sum_{n=k}^{\infty} a_n = a_k + a_{k+1} + \ldots$ either both converge or both

diverge. That is - the first k terms do not affect the convergence/divergence of an infinite series.

Theorem on Convergence/Divergence of the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots \text{ (called the } p\text{-series) converges if } p > 1 \text{ and diverges if } p \le 1.$

Proof:

Since $f(x) = \frac{1}{x^p}$ is continuous, positive and decreasing $f'(x) = \frac{-p}{x^{p-1}} < 0 \forall x$ for $p \ge 1$, we can apply the integral test.

Recall that we have proved that $\int_{1}^{\infty} \frac{1}{x^{p}} dx (p \text{ positive}) \text{ converges if } p > 1 \text{ and}$ diverges if $p \le 1$. Therefore by the Integral Test the theorem is proven.

Note:
$$\sum_{n=1}^{\infty} \frac{1}{n^1}$$
 i.e. the *p*-series when $p=1$ is called the Harmonic Series.

Note: Even though we know whether or not a *p*-series converges, we do not know what it converges to!

5.
$$\sum_{n=1}^{\infty} \frac{1}{n^{.95}}$$

 $6. \qquad \sum_{n=1}^{\infty} \frac{1}{n^{\frac{4}{3}}}$

$$7. \quad \sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$$

8.
$$\sum_{n=1}^{\infty} (1.075)^n$$

$$9. \qquad \sum_{n=1}^{\infty} \left(\frac{1}{n^2} - \frac{1}{n^3}\right)$$

10. Alternate proof of divergence of Harmonic Series. $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{n} + \frac{1}{n} + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

Recall $S_1 = 1$, $S_2 = 1.5$, $S_3 = 1.83$, $S_4 = 2.08$, $S_{100} = 5.19$, $S_{500} = 6.79$, $S_{1000} = 7.49$, $S_{2000} = 8.18$, $S_{3000} = 8.59$, $S_{248,642} = 13.0067$.

We will show that for any N > 0, we can make $S_n > N$

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) + \left(\frac{1}{17} + \dots + \frac{1}{32}\right) + \dots$$

 $S_4 >$

 $S_8 >$

 $S_{16} >$

 $S_{32} >$

 $S_{2^k} >$

 $S_{2^{12}} >$

 $S_{2^{18}} >$

11. How many terms of the harmonic series are needed to obtain a sum greater than 20?

12. How many terms of the harmonic series are needed to obtain a sum greater than 100?

13. How many terms of the harmonic series are needed to obtain a sum greater than 1660?

Miscellaneous Results:

1. If
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are convergent series, then $\sum_{n=1}^{\infty} (a_n + b_n)$ converges and $\sum_{n=1}^{\infty} ca_n$ converges.

2. If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} ca_n$ diverges.

3. If
$$\sum_{n=1}^{\infty} a_n$$
 converges and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges.

4. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent series, then no conclusion can be drawn regarding $\sum_{n=1}^{\infty} (a_n + b_n)$.

Compare
$$\sum_{n=1}^{\infty} \frac{1}{n} + \sum_{n=1}^{\infty} \frac{1}{2n}$$
 with $\sum_{n=1}^{\infty} \frac{1}{n} + \sum_{n=1}^{\infty} -\frac{1}{n}$

Although the Integral Test can be used to determine whether or not an infinite series converges or diverges it does not indicate what a convergent series converges to.

We will now investigate a method in which we can find an approximation to the sum of a convergent infinite series if the series satisfies the hypotheses of the Integral Test.

Definition: The remainder of a series is denoted by R_N and is represented by the sum of all of the terms S minus the sum of the first N terms S_N . i.e. $R_N = S - S_N$.

Consider a positive, continuous, decreasing function such as the one shown in the accompanying graph.

14. Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ using the first 4 terms and estimate the maximum error approximation.

$$\sum_{n=1}^{4} \frac{1}{n^5} = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} \approx 1.0363417784$$

Recall
$$0 \le R_4 \le \int_4^\infty \frac{1}{x^5} dx = \lim_{b \to \infty} \int_4^b x^{-5} dx =$$

15. Determine the number of terms to include in the sum in order to find the sum of $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ so that the truncation error $(R_N) \leq .001$