## **Comparison Tests**

Summary to Date:

## **Convergence**

Geometric Series:  $\sum ar^n$  converges if 0 < |r| < 1

**P-Series**:  $\sum \frac{1}{n^p}$  converges if p > 1

**Integral Test**:  $\sum a_n$  converges if  $\int_1^{\infty} f(x) dx$  converges

(need f positive, continuous and decreasing)

**Partial Sums:** If  $\lim_{n\to\infty} S_n = S$  converges, then  $\sum a_n$  converges to S

## **Divergence**

**Geometric Series**:  $\sum ar^n$  diverges if  $|r| \ge 1$ 

**P-Series**:  $\sum \frac{1}{p^p}$  diverges if 0

**Integral Test**:  $\sum a_n$  diverges if  $\int_1^{\infty} f(x) dx$  diverges

(need f positive, continuous and decreasing)

**Partial Sums:** If  $\lim_{n\to\infty} S_n$  diverges, then  $\sum a_n$  diverges **nth Term Test:** If  $\lim_{n\to\infty} a_n \neq 0$ , then  $\sum a_n$  diverges

Note: If  $\lim_{n \to \infty} a_n = 0$ , then you can not tell convergence or divergence.

## Theorem: Direct Comparison Test (CT)

Let  $0 < a_n \le b_n \forall n$  Note: This implies that all terms are positive. However if the terms are all positive after a particular term then the Direct Comparison test can still be applied. There are two possible conclusions using CT.

1. If  $\sum_{n=1}^{\infty} b_n$  converges, then  $\sum_{n=1}^{\infty} a_n$  converges. If the larger series converges, then the smaller series must converge. 2. If  $\sum_{n=1}^{\infty} a_n$  diverges, then  $\sum_{n=1}^{\infty} b_n$  diverges.

If the smaller series diverges, then the larger series must diverge.

Proof:

1) Assume  $\sum b_n$  converges, let  $L = \sum_{n=1}^{\infty} b_n$  and let  $S_n = a_1 + a_2 + ... + a_n$ Because  $0 < a_n \le b_n$ , the sequence  $S_1, S_2, S_3, ...$  is

2) Assume  $\sum a_n$  diverges. Let  $S_n = a_1 + a_2 + ... + a_n$  and  $S_n = b_1 + b_2 + ... + b_n$ Because  $0 < a_n \le b_n \ \forall n$ , then

Conclusive comparisons can be made between fractions with either like numerators or like denominators. We must compare the terms of an unknown series to the terms of a "known series".

$$1. \quad \sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$$

$$2. \qquad \sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$



 $\textbf{4.} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}}$ 

$$5. \qquad \sum_{n=1}^{\infty} \frac{|\sec n|}{n}$$

 $6. \quad \sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}}$ 

Often times a given series closely resembles a geometric series or a *p*-series, but you cannot establish the term by term comparison necessary to apply the Direct Comparison Test. A useful test in these circumstances is the Limit Comparison Test.

# Theorem: Limit Comparison Test (LCT)

Suppose  $a_n > 0$  and  $b_n > 0$  (positive terms) and  $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ . Then  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  either both converge or both diverge. Note: In using the LCT  $\sum_{n=1}^{\infty} a_n$  is generally the series to be tested and  $\sum_{n=1}^{\infty} b_n$  is the series that you already know to be convergent or divergent.

#### Addendum to LCT:

1. If 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 0$$
 and  $\sum_{n=1}^{\infty} b_n$  is convergent, then  $\sum_{n=1}^{\infty} a_n$  is also convergent.

2. If  $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$  and  $\sum_{n=1}^{\infty} b_n$  is divergent, then  $\sum_{n=1}^{\infty} a_n$  is also divergent.

1. If  $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ , then  $b_n$  overpowers  $a_n$ . ( $b_n$  is the bigger series so in the idea of the CT, if the bigger series  $b_n$  converges, so must the smaller series  $a_n$ ).

2. If  $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ , then  $a_n$  overpowers  $b_n$ . ( $a_n$  is the bigger series, so if  $b_n$  diverges, so does the bigger series  $a_n$ .)

7. 
$$\sum_{n=1}^{\infty} \frac{1}{an+b}$$
 (general harmonic)  $a > 0, b > 0$ 

$$8. \qquad \sum_{n=1}^{\infty} \frac{1}{2^n - 5}$$

9. 
$$\sum_{n=1}^{\infty} \frac{5n-3}{n^2-2n+5}$$

**10.** 
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)2^{n-1}}$$

**11.** 
$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n^2 + 1}}$$

Note: In using either the CT or the LCT we are able to determine whether a series converges or diverges but if it converges we do not know what it converges to, nor do we have a way to approximate the sum of the series.